Partially Fault-Tolerant Quantum Computing Architecture for Early-FTQC Era

In collaboration with Osaka University Based on arXiv:2303.13181

December 7, 2023 Fujitsu Limited

Newly Developed Quantum Computing Architecture FUjitsu

• We developed an architecture that fills the gap between NISQ and FTQC

NISQ: Noisy Intermediate-Scale Quantum computer FTQC: Fault-Tolerant Quantum Computer

- New phase rotation gate is introduced into the universal quantum gate set
- 64 logical qubits can be constructed with 10,000 physical qubits

physical qubits FTQC True performance of QC 1M Small number of 100k logical qubits early-FTQC 10k Р **Big impact of errors** 1k Numbei Google 100 NISO Useful in limited IBM USTC Google O Intel applications 10 IBM Superconducting QC 1 2025 2030 2035 2040 2010 2015 2020 Year

Universal quantum gate set

Development of superconducting quantum computer (QC)

Our QC activities

- Cover every layer of QC stack: device, platform, software and application
- Focus on software technologies while exploring a wide range of hardware
- Promote joint research with the world's leading research institutes

Recent press release

Successful development of 64-qubit superconducting quantum computer (Oct. 5, 2023)

FUIITSU

Fujitsu Uvance 🗸 Services 🗸 Products 🗸 Industries 🗸 About Fujitsu 🗸 Careers

lome > Press Releases > Fujitsu and RIKEN develop superconducting quantum computer at the RIKEN RQC-Fujitsu Collaboration Center, paving the way for platform for hybrid quantum computing

.

Share

Fujitsu and RIKEN develop superconducting quantum computer at the RIKEN RQC-Fujitsu Collaboration Center, paving the way for platform for hybrid quantum computing

Platform leverages new 64 qubit superconducting quantum computer to accelerate R&D for quantum chemistry calculations and quantum financial algorithms

Fujitsu Limited, RIKEN

Tokyo, October 5, 2023

Quantum computer developed at the RIKEN RQC-Fujitsu Collaboration Center

https://www.fujitsu.com/global/about/resources/news/press-releases/2023/1005-01.html

Quantum error: noise changes the state of the qubit, leading to incorrect computations

• Noise source: environment (thermal noise, etc), control signal (fluctuation, etc)

Fidelity of the overall computation = (fidelity of qubit)^(Q × D)

•e.g. (0.999)^(50 qubits x 20 gate operations)=0.368

In quantum error correction, a single logical qubit is constructed from several physical qubits

Redundancy protects quantum information from errors

FUJITSU

QEC is an essential requirement to realize practical QC

QEC needs enormous physical qubits and gate operations

Early-FTQC era regime

- Promise of small number of logical qubits
- How to make QEC practical?

An architecture tailor-made for this era is required

gate

The conventional FTQC architecture

Universal quantum gate set for QC

- Four gates: CNOT, H, S, T
- Circuits formed by the first three gates can be efficiently simulated classically
- The power of QC is realized only when T gate is involved

Each gate in the universal gate set can be reliably implemented in conventional FTQC architecture

QEC for T gate needs enormous number of physical qubits and gate operations

gate

Reliable T gate implementation

FUJITSU

 Logical-T gate is implemented by the gate teleportation with the magic state

Magic state creation via a distillation process

Dozens or hundreds of logical qubits are necessary to clean the magic state

Implementing phase rotation

Arbitrary rotation requires huge number of H and T gate operations – 50 times on average

QEC overhead for phase rotation is enormous

Introducing new phase rotation gate into the universal gate set

About 1/10 in number of physical qubit About 1/20 in number of gate operation

New method for phase rotation

FUjitsu

Phase rotation gate is implemented with an ancilla state via gate teleportation

• The ancilla state is not distilled in our architecture

No distillation greatly reduces number of physical qubits, however ancilla errors must be minimized

Technical points in phase rotation (1)

Generate a target angle θ by direct phase rotation of physical qubits and convert them into a logical qubit

High accuracy: approximately 1/8 of the physical error rate

Technical points in phase rotation (2)

Repeat until success with the logical qubit

High efficiency: Success in an average of 2

Numerical simulations

Under the assumption of 10^4 physical qubits with error rate $p = 10^{-4}$, Our architecture can perform **Clifford (CNOT, S, H) gates :** 1.72×10^7 **times Phase rotation gates :** 3.75×10^4 **times**

on 64 logical qubits

Achievement of newly developed architecture (1)

Estimated at QC with 10,000 physical qubits

• Calculation speed is the number of gate operations per unit time

Achievement of newly developed architecture (2)

Comparing quantum volume to NISQ computing

Benchmark circuit (4 qubits, depth 2)

Quantum volume

If the benchmark circuit (left figure) with nqubits and n depth is reasonably performed, we say the quantum volume (QV) is 2^n

• With the same assumption discussed the last slide, naive NISQ computing gives^[1] QV = 2^{37}

• On the other hand, our architecture achieves $QV = 2^{64}$

[1] A. W. Cross et al., Phys. Rev. A 100, 032328 (2019)

 For forthcoming early-FTQC era, new quantum computing architecture is essential to achieve useful computation

 We propose a quantum computing architecture which replaces T gate by phase rotation gate

 By numerical estimation, our architecture can surpass existing architectures on 10⁴ physical qubit device

Future plans

We plan to further refine this new architecture to advance the developments of QC in early-FTQC era, with the aim of applying to a wide range of practical social issues

Thank you!

